metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

μ -Oxido-bis[chlorido(4,4'-di-*tert*-butyl-2,2'-bipyridine- $\kappa^2 N, N'$)dioxidomolybdenum(VI)] 0.2-hydrate

Ana C. Gomes,^a José A. Fernandes,^a Carla A. Gamelas,^b Isabel S. Gonçalves^a and Filipe A. Almeida Paz^a*

^aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, and ^bEscola Superior de Tecnologia, Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal Correspondence e-mail: filipe.paz@ua.pt

Received 4 November 2011; accepted 7 November 2011

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.005 Å; disorder in solvent or counterion; R factor = 0.040; wR factor = 0.086; data-to-parameter ratio = 22.8.

The title hydrate, $[Mo_2Cl_2O_5(C_{18}H_{24}N_2)_2]\cdot 0.2H_2O$, has been isolated as the oxidation product of $[Mo(\eta^3-C_3H_5)Cl-(CO)_2(di-t-Bu-bipy)]$ (where di-t-Bu-bipy is 4,4'-di-tert-butyl-2,2'-bipyridine). A μ -oxide ligand bridges two similar $MoCl(di-t-Bu-bipy)O_2$ units, having the terminal oxide ligands mutually *cis*, and the chloride and μ -oxide *trans* to each other. In the binuclear complex, the coordination geometries of the metal atoms can be described as highly distorted octahedra. Individual complexes co-crystallize with a partially occupied water molecule of crystallization (occupancy factor = 0.20; H atoms not located), with the crystal packing being mediated by the need to effectively fill the available space. A number of weak $C-H \cdots O$ and $C-H \cdots Cl$ interactions are present.

Related literature

For general background to dioxidomolybdenum(VI) complexes, see: Arzoumanian *et al.* (2006); Jeyakumar & Chand (2009); Kühn *et al.* (2002); Rodrigues *et al.* (2004). For studies on molybdenum complexes from our research groups, see: Coelho *et al.* (2011); Fernandes *et al.* (2011*a,b,* 2011); Gago *et al.* (2009); Nunes *et al.* (2003); Pereira *et al.* (2007).

Experimental

Crystal data

 $\begin{bmatrix} Mo_2Cl_2O_5(C_{18}H_{24}N_2)_2 \end{bmatrix} \cdot 0.2H_2O \\ M_r = 883.17 \\ Monoclinic, P2_1/n \\ a = 16.9997 (7) Å \\ b = 12.7444 (6) Å \\ c = 18.4609 (8) Å \\ \beta = 99.582 (2)^{\circ}$

Data collection

Bruker X8 KappaCCD APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1997) $T_{min} = 0.938, T_{max} = 0.976$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	18 restraints
$wR(F^2) = 0.086$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.96 \ {\rm e} \ {\rm \AA}^{-3}$
10578 reflections	$\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$
463 parameters	

V = 3943.8 (3) Å³

Mo $K\alpha$ radiation $\mu = 0.82 \text{ mm}^{-1}$

 $0.08 \times 0.06 \times 0.03~\text{mm}$

54239 measured reflections

10578 independent reflections

7469 reflections with $I > 2\sigma(I)$

Z = 4

T = 150 K

 $R_{\rm int} = 0.050$

Table 1

Selected bond lengths (Å).

Mo1-O1	1.8920 (19)	Mo2-O1	1.9274 (19)
Mo1-O2	1.6972 (19)	Mo2-O4	1.6975 (19)
Mo1-O3	1.696 (2)	Mo2-O5	1.694 (2)
Mo1-N1	2.330 (2)	Mo2-N3	2.328 (2)
Mo1-N2	2.323 (2)	Mo2-N4	2.304 (2)
Mo1-Cl1	2.4895 (8)	Mo2-Cl2	2.4283 (8)

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C27-H27···O1 ⁱ	0.95	2.52	3.341 (3)	145
C34-H34A···Cl1 ⁱⁱ	0.98	2.77	3.748 (4)	174
$C35-H35A\cdots O4^{i}$	0.98	2.54	3.421 (4)	149
$C12-H12C\cdots O1W$	0.98	2.69	3.641 (16)	163
$C18-H18B\cdots O1W$	0.98	2.10	2.970 (18)	147
$O1W \cdot \cdot \cdot Cl2^i$			3.573 (18)	
$O1W \cdots O5^{iii}$			3.236 (17)	
Symmetry codes: $x - \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}.$	(i) $-x, -y$	+1, -z; (ii	i) $-x + \frac{1}{2}, y - \frac{1}{2},$	$-z + \frac{1}{2};$ (iii)

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT-Plus* (Bruker, 2005); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *DIAMOND* (Brandenburg, 2009); software used to prepare material for publication: *SHELXTL*.

We are grateful to the Fundação para a Ciência e a Tecnologia (FCT/FEDER and POCI, Portugal) for their general financial support to CICECO, and for the post-doctoral research grant No. SFRH/BPD/63736/2009 (to JAF). Thanks are also due to the FCT for specific funding toward the purchase of the single-crystal diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5013).

References

Arzoumanian, H., Bakhtchadjian, R., Agrifoglio, G., Atencio, R. & Briceno, A. (2006). *Transition Met. Chem.* 31, 681–689.

Brandenburg, K. (2009). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2005). *SAINT-Plus*. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

- Coelho, A. C., Nolasco, M., Balula, S. S., Antunes, M. M., Pereira, C. C. L., Paz, F. A. A., Valente, A. A., Pillinger, M., Ribeiro-Claro, P., Klinowski, J. & Gonçalves, I. S. (2011). *Inorg. Chem.* **50**, 525–538.
- Fernandes, J. A., Almeida Paz, F. A. & Romão, C. C. (2011). Acta Cryst. E67, m288–m289.
- Fernandes, J. A., Gomes, A. C., Figueiredo, S., Gago, S., Lopes, A. D., Pillinger, M., Ribeiro-Claro, P. J. A., Gonçalves, I. S. & Almeida Paz, F. A. (2010a). *Acta Cryst.* E66, m1005–m1006.

Fernandes, J. A., Gomes, A. C., Figueiredo, S., Gago, S., Ribeiro-Claro, P. J. A., Gonçalves, I. S. & Almeida Paz, F. A. (2010b). Acta Cryst. E66, m862–m863.

- Gago, S., Neves, P., Monteiro, B., Pessôgo, M., Lopes, A. D., Valente, A. A., Paz, F. A. A., Pillinger, M., Moreira, J., Silva, C. M. & Gonçalves, I. S. (2009). *Eur. J. Inorg. Chem.* pp. 4528–4537.
- Jeyakumar, K. & Chand, D. K. (2009). J. Chem. Sci. 121, 111-123.
- Kühn, F. E., Groarke, M., Bencze, E., Herdtweck, E., Prazeres, A., Santos, A. M., Calhorda, M. J., Romão, C. C., Gonçalves, I. S., Lopes, A. D. & Pillinger, M. (2002). *Chem. Eur. J.* 8, 2370–2383.
- Nunes, C. D., Valente, A. A., Pillinger, M., Rocha, J. & Gonçalves, I. S. (2003). *Chem. Eur. J.* 9, 4380–4390.
- Pereira, C. C. L., Balula, S. S., Paz, F. A. A., Valente, A. A., Pillinger, M., Klinowski, J. & Gonçalves, I. S. (2007). *Inorg. Chem.* 46, 8508–8510.
- Rodrigues, C. W., Limberg, C. & Pritzkow, H. (2004). Chem. Commun. pp. 2734–2735.
- Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2011). E67, m1738-m1739 [doi:10.1107/S1600536811046952]

μ -Oxido-bis[chlorido(4,4'-di-*tert*-butyl-2,2'-bipyridine- $\kappa^2 N,N'$)dioxidomolybdenum(VI)] 0.2-hy-drate

A. C. Gomes, J. A. Fernandes, C. A. Gamelas, I. S. Gonçalves and F. A. Almeida Paz

Comment

Dioxomolybdenum(VI) complexes are known to be highly active catalysts in the epoxidation of olefins (Kühn *et al.*, 2002; Jeyakumar & Chand, 2009). In these complexes the active metal-oxo functional group may appear with two distinct structural motifs: as a terminal oxo (Mo=O) or as a bridging μ -oxo (Mo=O-Mo). Compounds with the latter type of bridging group are significantly less studied but have been shown to be intermediates in a handful of interesting catalytic systems (Nunes *et al.*, 2003). Following our on-going interest in the study of this type of family of compounds (Fernandes *et al.*, 2010*a,b*, 2011) we have recently described the synthesis and structural details of the oxo- μ -oxo complexes [Mo₂O₄(μ -O)Cl₂(DMF)₄] (Gago *et al.*, 2009), [Mo₂O₄(μ -O)Cl₂(pyrazole)₄] (Pereira *et al.*, 2007), and [Mo₂O₄(μ -O)Cl₂(PzPy)₂] (where PzPy stands for 2-(3-pyrazolyl)pyridine) (Coelho *et al.*, 2011). Noteworthy, these complexes were found to be highly active in epoxidation catalysis with *tert*-butylhydroperoxide. The title compound, a μ -oxo dimer with empirical formula [Mo₂O₄(μ -O)Cl₂(μ -O)Cl₂(di-*t*-Bu-bipy)₂] (where di-*t*-Bu-bipy stands for 4,4'-di-*tert*-butyl-2,2'-bipyridine) which simultaneously contains terminal Mo=O oxo groups and a bridging μ -oxo one, has been recently synthesized by Arzoumanian *et al.* (2006) and we now wish to report its crystal structure at the low temperature of 150 K.

The asymmetric unit of the title compound comprises a whole binuclear molecular entity, C₃₆H₄₈Cl₂Mo₂N₄O₅, and a partially occupied (20%) water molecule of crystallization. The binuclear complex is formed by two crystallographically independent Mo(VI) centres bridged via a µ-oxo group imposing a Mo. Mo distance of 3.6273 (4) Å. The chemical environment of these metallic centers is very similar, being composed of a pair of *cis*-positioned terminal oxo ligands, a chlorido and a N,N-chelating 4,4'-di-tert-butyl-2,2'-bipyridine (di-t-Bu-bipy) molecule as depicted in Fig. 1. The coordination environments around the metal centers can be described as highly distorted octahedra due to, on the one hand, the existence of chlorido ligands (*trans*-positioned with respect to the μ -oxo ligand) and, on the other, to the typical *trans* effect of the Mo=O groups: while the Mo-Obridge distances are 1.8920 (19) and 1.9274 (19) Å, the Mo-Oterminal distances range from 1.694 (2) to 1.6975 (19) Å; the Mo-Cl distances are 2.4895 (8) and 2.4283 (8) Å and the Mo-N bonds range from 2.304 (2) to 2.330 (2) Å. The *cis* and *trans* octahedral angles are in the ranges of 68.95(8) to $107.35(10)^{\circ}$ and 157.51(6) to $160.69(9)^{\circ}$, respectively. The Mo1—O1—Mo2 kink angle through the µ-oxo bridge is 143.50 (10)° which, to the best of our knowledge, constitutes the smallest reported to date for related binuclear dioxomolybdenum(VI) complexes: the analogous value for $[Mo_2O_4(\mu-O)Cl_2(DMF)_4]$ is ca 175° and that for $[Mo_2O_4(\mu-O)Cl_2(pyrazole)_4]$ is ca 151°, and those for the two conformers of $[Mo_2O_4(\mu-O)Cl_2(PzPy)_2]$ are ca 156 and 180°. We attribute this structural feature to the considerable steric hindrance associated with the di-t-Bu-bipy moieties, mostly due to the pendant —CH₃ groups. In this context, the two average planes containing the aromatic rings of the two crystallographically independent di-t-Bu-bipy molecules subtend an angle of ca 34°, which contrasts with the parallel nature observed for the two conformers of $[Mo_2O_4(\mu-O)Cl_2(PzPy)_2]$. Noteworthy, the torsion angles N1—Mo1···Mo2—N4 and N2—Mo1···Mo2—N3 are -18.40 (7) and -157.03 (9)°, respectively.

The crystal packing is mainly driven by the need to effectively fill the available space (van de Waals contacts) in conjunction with several weak supramolecular interactions, namely weak C—H···O and C—H···Cl hydrogen bonding interactions (light blue dashed lines in Fig. 2; see Table 2 for geometric details). The water molecule of crystallization (O1W), which is only statistically present in 1/5 of the asymmetric units, accepts the hydrogen donation from adjacent C—H groups and also acts as hydrogen bond donor to Cl2 and O5 of neighboring molecules (violet dashed lines in Figure 2; see Table 2 for geometrical details). Even though the location of the water molecule permits its full site occupancy, we postulate that the absence of suitable hydrogen bonding partners in the binuclear complexes contributes significantly for its partial occupancy in the crystal structure.

Experimental

Chemicals were purchased from commercial sources and used as received. The compound $[Mo(\eta^3-C_3H_5)Cl(CO)_2(di-t-Bu$ bipy)] (1) was prepared following a literature method (Rodrigues *et al.*, 2004). Thus, 70% aqueous *tert*-butylhydroperoxide (TBHP) (0.64 mL, 4.60 mmol) was added dropwise to a stirred solution of 1 (0.23 g, 0.46 mmol) in CH₃CN (20 mL). After stirring at ambient temperature for 15 h, the resultant yellow solution was filtered off, concentrated, and a very pale yellow solid precipitated after the addition of *n*-hexane and diethyl ether. The precipitate was filtered, washed with *n*-hexane and diethyl ether, and vacuum-dried. Yield: 0.14 g, 69%.

The same product (as confirmed by a comparison of FT–IR and ¹H NMR spectra, and microanalysis data) was obtained by using a decane solution of TBHP (5–6 M, 10 equiv.) instead of the aqueous solution, with **1** dissolved in CH_2Cl_2 under otherwise similar conditions (the excess of TBHP was destroyed with MnO₂).

Anal. Calcd. for $C_{36}H_{48}N_4Cl_2Mo_2O_5.0.2H_2O$ (in %): C, 48.96; H, 5.52; N, 6.34. Found (in %): C, 49.47; H, 5.52; N, 6.28. The FT–IR and ¹H NMR spectral data were in agreement with published data (Arzoumanian *et al.*, 2006).

Suitable crystals were obtained by the slow diffusion of diethyl ether into a concentrated solution of the compound in CH_2Cl_2 with a small layer of *n*-hexane.

Refinement

Hydrogen atoms bound to carbon were placed in idealized positions and were included in the final structural model in riding-motion approximation with C—H = 0.95 Å (aromatic C—H) and 0.98 Å (—CH₃). The isotropic thermal displacement parameters for these atoms were fixed at $1.2 \times U_{eq}$ (aromatic C—H) or $1.5 \times U_{eq}$ (—CH₃) of the respective parent carbon atoms.

One water molecule of crystallization was found to be partially occupied and was included in the final structural model with fixed rate of occupancy of 20% (calculated from unrestrained refinement for the site occupancy). Hydrogen atoms associated with this water molecule could not be located from difference Fourier maps and attempts to include these in calculated positions did not lead stable structural refinements. Nevertheless, the hydrogen atoms associated with this chemical entity have been included in the empirical formula of the title compound.

Figures

Fig. 1. Asymmetric unit of the title compound showing all non-hydrogen atoms represented as thermal ellipsoids drawn at the 50% probability level. The water molecule has a site occupancy factor = 0.20. Hydrogen atoms are represented as small spheres with arbitrary radii and the atomic labeling is provided for all non-hydrogen atoms.

Fig. 2. Crystal packing of the title compound viewed in perspective along [010] direction. The highly distorted {MoCl₂N₂O₂} coordination polyhedra are represented as translucent octahedra for clarity. Supramolecular contacts interconnecting adjacent chemical moieties are represented as dashed lines: C—H…O and C—H…Cl in light blue; O_{water} …O and O_{water} …Cl in violet.

$\mu - Oxido-bis[chlorido(4,4'-di-tert-butyl-2,2'-bipyridine- \kappa^2 N, N') dioxidomolybdenum(VI)] \ 0.2-hydrate$

F(000) = 1808 $D_{\rm x} = 1.487 \text{ Mg m}^{-3}$

 $\theta = 2.8-29.1^{\circ}$ $\mu = 0.82 \text{ mm}^{-1}$ T = 150 KBlock, yellow

 $0.08 \times 0.06 \times 0.03 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 9903 reflections

Crystal data
$[Mo_2Cl_2O_5(C_{18}H_{24}N_2)_2]\cdot 0.2H_2O$
$M_r = 883.17$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 16.9997 (7) Å
<i>b</i> = 12.7444 (6) Å
c = 18.4609 (8) Å
$\beta = 99.582 \ (2)^{\circ}$
$V = 3943.8 (3) \text{ Å}^3$
Z = 4

Data collection

Bruker X8 KappaCCD APEXII diffractometer	10578 independent reflections
Radiation source: fine-focus sealed tube	7469 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.050$
ω and ϕ scans	$\theta_{\text{max}} = 29.1^{\circ}, \ \theta_{\text{min}} = 3.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)	$h = -23 \rightarrow 23$
$T_{\min} = 0.938, T_{\max} = 0.976$	$k = -16 \rightarrow 17$
54239 measured reflections	$l = -24 \rightarrow 25$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.086$	H-atom parameters constrained
<i>S</i> = 1.02	$w = 1/[\sigma^2(F_0^2) + (0.0315P)^2 + 3.406P]$ where $P = (F_0^2 + 2F_c^2)/3$
10578 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
463 parameters	$\Delta \rho_{max} = 0.96 \text{ e } \text{\AA}^{-3}$
18 restraints	$\Delta \rho_{\rm min} = -0.67 \ e \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and is	sotroni	or or of	minalent	isotron	nic dis	nlacomont	naramotors	1 Å-	4
racionai	uionnic	coordinates	unu i.	sonopu		juivuieni	isonop	ne uis	pracement	purumeters	(\mathbf{A})	1

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Mo1	0.161140 (13)	0.78289 (2)	0.101763 (13)	0.02009 (7)	
Mo2	0.153567 (14)	0.63578 (2)	-0.067460 (14)	0.02215 (7)	
Cl1	0.16494 (4)	0.87386 (6)	0.22163 (4)	0.02652 (16)	
Cl2	0.21012 (5)	0.51282 (7)	-0.14517 (4)	0.03473 (19)	
N1	0.11178 (12)	0.65491 (18)	0.17242 (13)	0.0210 (5)	
N2	0.02749 (13)	0.81233 (19)	0.10764 (13)	0.0213 (5)	
N3	0.27507 (13)	0.59963 (19)	0.00696 (13)	0.0223 (5)	
N4	0.14638 (12)	0.48235 (19)	-0.00290 (12)	0.0211 (5)	
01	0.12571 (10)	0.69242 (15)	0.02171 (10)	0.0224 (4)	
02	0.25605 (11)	0.73982 (17)	0.12818 (11)	0.0276 (5)	
O3	0.16755 (12)	0.89784 (16)	0.05679 (12)	0.0311 (5)	
O4	0.06091 (11)	0.61851 (17)	-0.11680 (11)	0.0297 (5)	
05	0.19330 (13)	0.74344 (18)	-0.10133 (12)	0.0360 (5)	
C1	0.15948 (16)	0.5835 (2)	0.21063 (16)	0.0238 (6)	
H1	0.2115	0.5743	0.1992	0.029*	
C2	0.13739 (16)	0.5228 (2)	0.26543 (17)	0.0245 (6)	
H2	0.1739	0.4736	0.2910	0.029*	
C3	0.06192 (16)	0.5334 (2)	0.28335 (16)	0.0263 (7)	
C4	0.01067 (16)	0.6030 (3)	0.23986 (17)	0.0297 (7)	
H4	-0.0432	0.6088	0.2472	0.036*	
C5	0.03666 (15)	0.6629 (2)	0.18700 (16)	0.0235 (6)	
C6	-0.01214 (16)	0.7471 (2)	0.14631 (16)	0.0232 (6)	
C7	-0.09241 (16)	0.7619 (3)	0.14974 (17)	0.0292 (7)	
H7	-0.1198	0.7126	0.1751	0.035*	

C8	-0.13296 (16)	0.8487 (3)	0.11624 (17)	0.0298 (7)
C9	-0.09027 (17)	0.9162 (3)	0.07927 (17)	0.0295 (7)
Н9	-0.1152	0.9770	0.0561	0.035*
C10	-0.01101 (17)	0.8954 (2)	0.07589 (16)	0.0245 (6)
H10	0.0171	0.9427	0.0497	0.029*
C11	0.03393 (19)	0.4783 (3)	0.34808 (19)	0.0385 (8)
C12	0.0029 (3)	0.5616 (4)	0.3962 (2)	0.0777 (16)
H12A	0.0464	0.6095	0.4158	0.117*
H12B	-0.0172	0.5273	0.4370	0.117*
H12C	-0.0403	0.6013	0.3666	0.117*
C13	-0.0336 (2)	0.4023 (4)	0.3180 (2)	0.0666 (14)
H13A	-0.0763	0.4408	0.2868	0.100*
H13B	-0.0547	0.3701	0.3590	0.100*
H13C	-0.0129	0.3474	0.2890	0.100*
C14	0.1016 (2)	0.4186 (3)	0.3952 (2)	0.0461 (10)
H14A	0.1204	0.3627	0.3659	0.069*
H14B	0.0822	0.3878	0.4376	0.069*
H14C	0.1456	0.4669	0.4123	0.069*
C15	-0.22161 (17)	0.8645 (3)	0.1206 (2)	0.0397 (9)
C16	-0.2495 (2)	0.9713 (4)	0.0924 (4)	0.0971 (19)
H16A	-0.3076	0.9757	0.0886	0.146*
H16B	-0.2348	0.9824	0.0438	0.146*
H16C	-0.2243	1.0252	0.1264	0.146*
C17	-0.2693 (2)	0.7825 (4)	0.0698 (3)	0.0681 (13)
H17A	-0.2527	0.7118	0.0870	0.102*
H17B	-0.2590	0.7920	0.0195	0.102*
H17C	-0.3264	0.7914	0.0706	0.102*
C18	-0.2369 (3)	0.8407 (6)	0.1960 (3)	0.106 (2)
H18A	-0.2121	0.8948	0.2301	0.159*
H18B	-0.2142	0.7720	0.2115	0.159*
H18C	-0.2946	0.8397	0.1960	0.159*
C19	0.33976 (16)	0.6593 (2)	0.00679 (17)	0.0274 (7)
H19	0.3352	0.7203	-0.0232	0.033*
C20	0.41289 (16)	0.6358 (3)	0.04836 (17)	0.0279 (7)
H20	0.4572	0.6806	0.0465	0.033*
C21	0.42233 (15)	0.5476 (2)	0.09269 (16)	0.0241 (6)
C22	0.35406 (15)	0.4888 (2)	0.09491 (16)	0.0243 (6)
H22	0.3568	0.4295	0.1265	0.029*
C23	0.28184 (15)	0.5150 (2)	0.05182 (15)	0.0206 (6)
C24	0.20800 (15)	0.4519 (2)	0.04866 (15)	0.0209 (6)
C25	0.20205 (15)	0.3673 (2)	0.09379 (15)	0.0213 (6)
H25	0.2459	0.3494	0.1307	0.026*
C26	0.13233 (16)	0.3073 (2)	0.08606 (15)	0.0211 (6)
C27	0.07065 (16)	0.3385 (2)	0.03097 (16)	0.0234 (6)
H27	0.0223	0.2995	0.0223	0.028*
C28	0.07950 (15)	0.4252 (2)	-0.01084 (16)	0.0232 (6)
H28	0.0360	0.4457	-0.0473	0.028*
C29	0.50289 (16)	0.5150 (3)	0.13790 (18)	0.0304 (7)
C30	0.50366 (18)	0.5490 (3)	0.21771 (19)	0.0435 (9)

H30A	0.5534	0.5256	0.2481	0.065*	
H30B	0.4582	0.5174	0.2359	0.065*	
H30C	0.4999	0.6256	0.2201	0.065*	
C31	0.57226 (17)	0.5677 (3)	0.1089 (2)	0.0420 (9)	
H31A	0.5688	0.6439	0.1147	0.063*	
H31B	0.5696	0.5505	0.0568	0.063*	
H31C	0.6229	0.5423	0.1367	0.063*	
C32	0.51307 (18)	0.3958 (3)	0.1352 (2)	0.0428 (9)	
H32A	0.5029	0.3722	0.0840	0.064*	
H32B	0.4752	0.3619	0.1624	0.064*	
H32C	0.5676	0.3770	0.1575	0.064*	
C33	0.12703 (17)	0.2135 (2)	0.13614 (16)	0.0260 (6)	
C34	0.1347 (2)	0.2522 (3)	0.21501 (17)	0.0394 (9)	
H34A	0.1857	0.2888	0.2288	0.059*	
H34B	0.1325	0.1923	0.2479	0.059*	
H34C	0.0908	0.3006	0.2192	0.059*	
C35	0.04774 (18)	0.1555 (3)	0.11683 (17)	0.0319 (7)	
H35A	0.0043	0.2012	0.1265	0.048*	
H35B	0.0490	0.0919	0.1469	0.048*	
H35C	0.0391	0.1362	0.0647	0.048*	
C36	0.1950 (2)	0.1374 (3)	0.1283 (2)	0.0459 (9)	
H36A	0.1899	0.1143	0.0771	0.069*	
H36B	0.1922	0.0763	0.1601	0.069*	
H36C	0.2464	0.1729	0.1428	0.069*	
O1W	-0.1847 (9)	0.6639 (13)	0.2975 (10)	0.078 (5)	0.20

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.01580 (10)	0.02716 (14)	0.01656 (13)	-0.00222 (10)	0.00054 (8)	-0.00064 (11)
Mo2	0.02064 (11)	0.02864 (15)	0.01613 (13)	0.00094 (10)	0.00001 (9)	0.00249 (11)
Cl1	0.0231 (3)	0.0348 (4)	0.0201 (4)	-0.0005 (3)	-0.0010 (3)	-0.0053 (3)
Cl2	0.0354 (4)	0.0461 (5)	0.0232 (4)	0.0068 (4)	0.0064 (3)	-0.0019 (4)
N1	0.0157 (10)	0.0261 (14)	0.0201 (13)	-0.0015 (9)	0.0001 (9)	-0.0008 (10)
N2	0.0193 (11)	0.0258 (14)	0.0169 (13)	0.0015 (9)	-0.0026 (9)	-0.0009 (10)
N3	0.0197 (11)	0.0278 (14)	0.0197 (13)	-0.0008 (10)	0.0042 (9)	-0.0008 (10)
N4	0.0175 (10)	0.0289 (14)	0.0150 (12)	-0.0024 (9)	-0.0030 (9)	0.0006 (10)
01	0.0183 (9)	0.0286 (12)	0.0188 (11)	0.0011 (8)	-0.0015 (8)	-0.0022 (8)
O2	0.0177 (9)	0.0421 (13)	0.0222 (11)	-0.0017 (9)	0.0009 (8)	-0.0067 (9)
O3	0.0377 (12)	0.0301 (12)	0.0259 (12)	-0.0038 (9)	0.0067 (10)	0.0005 (9)
O4	0.0260 (10)	0.0400 (13)	0.0199 (11)	0.0023 (9)	-0.0052 (8)	-0.0001 (9)
O5	0.0374 (12)	0.0373 (14)	0.0332 (13)	-0.0015 (10)	0.0059 (10)	0.0100 (11)
C1	0.0184 (12)	0.0276 (17)	0.0244 (16)	0.0005 (11)	0.0008 (11)	-0.0013 (13)
C2	0.0202 (13)	0.0260 (16)	0.0257 (17)	0.0038 (11)	-0.0011 (12)	0.0026 (13)
C3	0.0223 (13)	0.0332 (18)	0.0221 (16)	0.0011 (12)	0.0001 (12)	0.0064 (13)
C4	0.0164 (13)	0.043 (2)	0.0296 (18)	0.0021 (12)	0.0049 (12)	0.0090 (14)
C5	0.0167 (12)	0.0327 (17)	0.0204 (15)	-0.0003 (11)	0.0008 (11)	0.0024 (13)
C6	0.0195 (13)	0.0300 (17)	0.0189 (15)	0.0008 (11)	-0.0007 (11)	0.0022 (12)

C7	0.0168 (13)	0.044 (2)	0.0259 (17)	0.0010 (13)	0.0016 (12)	0.0048 (14)
C8	0.0201 (13)	0.043 (2)	0.0248 (17)	0.0051 (13)	-0.0012 (12)	-0.0036 (14)
C9	0.0282 (15)	0.0311 (18)	0.0256 (17)	0.0071 (13)	-0.0059 (13)	0.0003 (14)
C10	0.0277 (14)	0.0245 (16)	0.0189 (16)	-0.0003 (12)	-0.0032 (12)	-0.0014 (12)
C11	0.0338 (17)	0.051 (2)	0.033 (2)	0.0093 (16)	0.0107 (14)	0.0173 (17)
C12	0.107 (4)	0.090 (4)	0.047 (3)	0.053 (3)	0.043 (3)	0.033 (3)
C13	0.0322 (19)	0.099 (4)	0.070 (3)	-0.011 (2)	0.0104 (19)	0.048 (3)
C14	0.0408 (19)	0.058 (3)	0.040 (2)	0.0081 (17)	0.0077 (16)	0.0235 (19)
C15	0.0185 (14)	0.059 (2)	0.040 (2)	0.0117 (15)	0.0008 (13)	0.0013 (18)
C16	0.037 (2)	0.072 (3)	0.186 (6)	0.021 (2)	0.029 (3)	0.006 (4)
C17	0.0261 (17)	0.096 (4)	0.083 (3)	-0.005 (2)	0.0089 (19)	-0.006 (3)
C18	0.048 (2)	0.219 (6)	0.056 (3)	0.055 (3)	0.023 (2)	0.010 (4)
C19	0.0246 (14)	0.0271 (17)	0.0318 (18)	0.0008 (12)	0.0084 (13)	0.0010 (14)
C20	0.0179 (13)	0.0360 (18)	0.0302 (18)	-0.0029 (12)	0.0057 (12)	-0.0050 (14)
C21	0.0188 (13)	0.0330 (18)	0.0198 (16)	0.0008 (12)	0.0013 (11)	-0.0062 (13)
C22	0.0201 (13)	0.0294 (17)	0.0230 (16)	0.0016 (12)	0.0025 (11)	-0.0003 (13)
C23	0.0175 (12)	0.0281 (16)	0.0160 (15)	0.0000 (11)	0.0020 (10)	-0.0008 (12)
C24	0.0186 (12)	0.0260 (16)	0.0163 (15)	-0.0006 (11)	-0.0024 (10)	-0.0034 (12)
C25	0.0201 (12)	0.0250 (16)	0.0166 (14)	-0.0008 (11)	-0.0033 (11)	0.0003 (12)
C26	0.0221 (13)	0.0240 (16)	0.0161 (15)	-0.0014 (11)	0.0000 (11)	-0.0022 (12)
C27	0.0204 (13)	0.0268 (17)	0.0212 (16)	-0.0040 (11)	-0.0018 (11)	-0.0022 (12)
C28	0.0189 (12)	0.0306 (17)	0.0178 (15)	-0.0008 (11)	-0.0039 (11)	-0.0023 (13)
C29	0.0168 (13)	0.045 (2)	0.0282 (18)	0.0030 (13)	0.0011 (12)	-0.0047 (15)
C30	0.0240 (15)	0.072 (3)	0.031 (2)	0.0066 (16)	-0.0046 (14)	-0.0089 (18)
C31	0.0182 (14)	0.064 (3)	0.043 (2)	0.0004 (15)	0.0031 (14)	0.0020 (19)
C32	0.0232 (15)	0.052 (2)	0.051 (2)	0.0094 (15)	-0.0012 (15)	-0.0005 (18)
C33	0.0273 (14)	0.0306 (17)	0.0182 (15)	-0.0062 (13)	-0.0013 (11)	0.0023 (13)
C34	0.0481 (19)	0.046 (2)	0.0210 (18)	-0.0263 (16)	-0.0025 (15)	-0.0002 (15)
C35	0.0388 (17)	0.0327 (19)	0.0199 (17)	-0.0130 (14)	-0.0075 (13)	0.0037 (14)
C36	0.0426 (19)	0.034 (2)	0.060 (3)	0.0063 (16)	0.0040 (18)	0.0164 (18)
O1W	0.055 (9)	0.079 (12)	0.105 (14)	-0.006 (8)	0.029 (9)	0.015 (10)

Geometric parameters (Å, °)

Mo1—O1	1.8920 (19)	C15—C17	1.541 (5)
Mo1—O2	1.6972 (19)	C16—H16A	0.9800
Mo1—O3	1.696 (2)	C16—H16B	0.9800
Mo1—N1	2.330 (2)	C16—H16C	0.9800
Mo1—N2	2.323 (2)	С17—Н17А	0.9800
Mo1—Cl1	2.4895 (8)	С17—Н17В	0.9800
Mo2—O1	1.9274 (19)	С17—Н17С	0.9800
Mo2—O4	1.6975 (19)	C18—H18A	0.9800
Mo2—O5	1.694 (2)	C18—H18B	0.9800
Mo2—N3	2.328 (2)	C18—H18C	0.9800
Mo2—N4	2.304 (2)	C19—C20	1.381 (4)
Mo2—Cl2	2.4283 (8)	С19—Н19	0.9500
N1—C1	1.339 (3)	C20—C21	1.384 (4)
N1—C5	1.352 (3)	C20—H20	0.9500
N2—C10	1.329 (4)	C21—C22	1.388 (4)

	1 2 4 7 (4)	C21 C20	1 527 (4)
N2	1.347 (4)	C21—C29	1.537 (4)
N3-C19	1.337 (4)	C22—C23	1.388 (4)
N3-C23	1.353 (4)	C22—H22	0.9500
N4	1.338 (3)	C23—C24	1.484 (4)
N4—C24	1.350 (3)	C24—C25	1.377 (4)
C1—C2	1.375 (4)	C25—C26	1.397 (4)
CI—HI	0.9500	C25—H25	0.9500
C2—C3	1.384 (4)	C26—C27	1.391 (4)
С2—Н2	0.9500	C26—C33	1.523 (4)
C3—C4	1.399 (4)	C27—C28	1.371 (4)
C3—C11	1.529 (4)	C27—H27	0.9500
C4—C5	1.369 (4)	C28—H28	0.9500
C4—H4	0.9500	C29—C31	1.529 (4)
C5—C6	1.482 (4)	C29—C32	1.531 (5)
C6—C7	1.389 (4)	C29—C30	1.534 (5)
C7—C8	1.393 (4)	С30—Н30А	0.9800
С7—Н7	0.9500	С30—Н30В	0.9800
C8—C9	1.378 (4)	С30—Н30С	0.9800
C8—C15	1.536 (4)	C31—H31A	0.9800
C9—C10	1.385 (4)	C31—H31B	0.9800
С9—Н9	0.9500	C31—H31C	0.9800
C10—H10	0.9500	C32—H32A	0.9800
C11—C14	1.524 (4)	С32—Н32В	0.9800
C11—C13	1.533 (5)	С32—Н32С	0.9800
C11—C12	1.534 (6)	C33—C34	1.522 (4)
C12—H12A	0.9800	C33—C35	1.526 (4)
C12—H12B	0.9800	C33—C36	1.534 (4)
C12—H12C	0.9800	C34—H34A	0.9800
C13—H13A	0.9800	C34—H34B	0.9800
C13—H13B	0.9800	C34—H34C	0.9800
C13—H13C	0.9800	С35—Н35А	0.9800
C14—H14A	0.9800	С35—Н35В	0.9800
C14—H14B	0.9800	С35—Н35С	0.9800
C14—H14C	0.9800	С36—Н36А	0.9800
C15—C18	1.490 (6)	С36—Н36В	0.9800
C15—C16	1.504 (6)	С36—Н36С	0.9800
O3—Mo1—O2	106.53 (10)	C18—C15—C17	105.9 (4)
03 - Mo1 - 01	100.49 (9)	C16-C15-C17	107.4 (4)
02 - Mo1 - 01	101.02 (9)	C8 - C15 - C17	107.5(3)
O_3 —Mo1—N2	91 51 (9)	C15-C16-H16A	109.5
Ω^2 —Mo1—N2	158 31 (9)	C15—C16—H16B	109.5
Ω_1 —Mo1—N2	87 03 (8)	H16A—C16—H16B	109.5
O3—Mo1—N1	159 54 (9)	C15—C16—H16C	109.5
Ω^2 —Mo1—N1	91 52 (9)	H16A-C16-H16C	109.5
$\Omega_1 - M_0 1 - N_1$	85.02 (8)	H16B-C16-H16C	109.5
$N^2 - M_0 1 - N^1$	68 95 (8)	C15—C17—H17A	109.5
O3-Mo1-C11	92 21 (8)	C15—C17—H17B	109.5
Ω^2 —Mo1—Cl1	90 71 (7)	H17A_C17_H17B	109.5
$\Omega_1 - M_0 1 - C^{11}$	159 37 (6)	C15_C17_H17C	109.5
	107.07 (0)		107.5

N2—Mo1—Cl1	76.36 (6)	H17A—C17—H17C	109.5
N1—Mo1—Cl1	77.70 (6)	H17B—C17—H17C	109.5
O5—Mo2—O4	107.35 (10)	C15—C18—H18A	109.5
O5—Mo2—O1	100.46 (10)	C15—C18—H18B	109.5
O4—Mo2—O1	99.73 (9)	H18A—C18—H18B	109.5
O5—Mo2—N4	159.56 (9)	C15—C18—H18C	109.5
O4—Mo2—N4	92.48 (9)	H18A—C18—H18C	109.5
O1—Mo2—N4	80.46 (8)	H18B—C18—H18C	109.5
O5—Mo2—N3	90.52 (9)	N3—C19—C20	122.7 (3)
O4—Mo2—N3	160.69 (9)	N3—C19—H19	118.7
O1—Mo2—N3	83.69 (8)	С20—С19—Н19	118.7
N4—Mo2—N3	69.21 (8)	C19—C20—C21	120.7 (3)
O5—Mo2—Cl2	94.77 (8)	С19—С20—Н20	119.7
O4—Mo2—Cl2	91.29 (7)	С21—С20—Н20	119.7
O1—Mo2—Cl2	157.51 (6)	C20—C21—C22	116.2 (3)
N4—Mo2—Cl2	79.53 (6)	C20—C21—C29	123.0 (3)
N3—Mo2—Cl2	79.71 (6)	C22—C21—C29	120.8 (3)
C1—N1—C5	117.1 (2)	C21—C22—C23	121.1 (3)
C1—N1—Mo1	121.85 (18)	C21—C22—H22	119.4
C5—N1—Mo1	119.91 (18)	С23—С22—Н22	119.4
C10—N2—C6	118.2 (2)	N3—C23—C22	121.3 (3)
C10-N2-Mo1	121.46 (19)	N3—C23—C24	115.0 (2)
C6—N2—Mo1	120.28 (18)	C22—C23—C24	123.6 (3)
C19—N3—C23	117.9 (2)	N4—C24—C25	121.7 (2)
C19—N3—Mo2	122.4 (2)	N4—C24—C23	115.1 (2)
C23—N3—Mo2	119.71 (17)	C25—C24—C23	123.2 (2)
C28—N4—C24	117.8 (2)	C24—C25—C26	120.9 (2)
C28—N4—Mo2	121.53 (18)	С24—С25—Н25	119.6
C24—N4—Mo2	120.46 (18)	C26—C25—H25	119.6
Mo1—O1—Mo2	143.50 (10)	C27—C26—C25	116.2 (3)
N1—C1—C2	123.7 (3)	C27—C26—C33	123.6 (2)
N1—C1—H1	118.2	C25—C26—C33	120.1 (2)
С2—С1—Н1	118.2	C28—C27—C26	120.1 (3)
C1—C2—C3	119.9 (3)	С28—С27—Н27	119.9
С1—С2—Н2	120.0	С26—С27—Н27	119.9
С3—С2—Н2	120.0	N4—C28—C27	123.3 (3)
C2—C3—C4	116.0 (3)	N4—C28—H28	118.4
C2—C3—C11	124.3 (3)	C27—C28—H28	118.4
C4—C3—C11	119.6 (3)	C31—C29—C32	109.0 (3)
C5—C4—C3	121.2 (3)	C31—C29—C30	109.2 (3)
С5—С4—Н4	119.4	C32—C29—C30	109.2 (3)
C3—C4—H4	119.4	C31—C29—C21	111.2 (3)
N1—C5—C4	121.8 (3)	C32—C29—C21	110.2 (3)
N1—C5—C6	114.9 (2)	C30—C29—C21	108.1 (2)
C4—C5—C6	123.0 (3)	С29—С30—Н30А	109.5
N2—C6—C7	121.4 (3)	С29—С30—Н30В	109.5
N2—C6—C5	115.4 (2)	H30A—C30—H30B	109.5
C7—C6—C5	123.1 (3)	С29—С30—Н30С	109.5
C6—C7—C8	120.3 (3)	H30A—C30—H30C	109.5

С6—С7—Н7	119.8	H30B—C30—H30C	109.5
С8—С7—Н7	119.8	C29—C31—H31A	109.5
C9—C8—C7	117.0 (3)	С29—С31—Н31В	109.5
C9—C8—C15	123.1 (3)	H31A—C31—H31B	109.5
C7—C8—C15	119.9 (3)	С29—С31—Н31С	109.5
C8—C9—C10	120.0 (3)	H31A—C31—H31C	109.5
С8—С9—Н9	120.0	H31B—C31—H31C	109.5
С10—С9—Н9	120.0	С29—С32—Н32А	109.5
N2-C10-C9	123.0 (3)	С29—С32—Н32В	109.5
N2-C10-H10	118.5	H32A—C32—H32B	109.5
C9—C10—H10	118.5	С29—С32—Н32С	109.5
C14—C11—C3	111.8 (3)	H32A—C32—H32C	109.5
C14—C11—C13	109.9 (3)	H32B—C32—H32C	109.5
C3—C11—C13	108.6 (3)	C34—C33—C26	108.7 (3)
C14—C11—C12	108.4 (3)	C34—C33—C35	108.2 (3)
C3—C11—C12	108.5 (3)	C26—C33—C35	112.2 (2)
C13—C11—C12	109.8 (3)	C34—C33—C36	110.4 (3)
C11—C12—H12A	109.5	C26—C33—C36	108.5 (3)
C11—C12—H12B	109.5	C35—C33—C36	108.8 (3)
H12A—C12—H12B	109.5	С33—С34—Н34А	109.5
C11—C12—H12C	109.5	С33—С34—Н34В	109.5
H12A—C12—H12C	109.5	H34A—C34—H34B	109.5
H12B—C12—H12C	109.5	С33—С34—Н34С	109.5
С11—С13—Н13А	109.5	H34A—C34—H34C	109.5
C11—C13—H13B	109.5	H34B—C34—H34C	109.5
H13A—C13—H13B	109.5	С33—С35—Н35А	109.5
C11—C13—H13C	109.5	С33—С35—Н35В	109.5
H13A—C13—H13C	109.5	H35A—C35—H35B	109.5
H13B—C13—H13C	109.5	С33—С35—Н35С	109.5
C11—C14—H14A	109.5	H35A—C35—H35C	109.5
C11—C14—H14B	109.5	H35B—C35—H35C	109.5
H14A—C14—H14B	109.5	С33—С36—Н36А	109.5
C11—C14—H14C	109.5	С33—С36—Н36В	109.5
H14A—C14—H14C	109.5	H36A—C36—H36B	109.5
H14B—C14—H14C	109.5	С33—С36—Н36С	109.5
C18—C15—C16	114.4 (4)	H36A—C36—H36C	109.5
C18—C15—C8	110.3 (3)	H36B—C36—H36C	109.5
C16—C15—C8	110.9 (3)		
$03 - M_01 - N1 - C1$	-1544(3)	N1-C5-C6-N2	-80(4)
Ω^2 —Mo1—N1—C1	-22(2)	C4-C5-C6-N2	166.9(3)
01—Mo1—N1—C1	98 8 (2)	N1 - C5 - C6 - C7	174.8 (3)
N^2 —Mo1—N1—C1	-1725(2)	C4-C5-C6-C7	-10.3(5)
Cl1-Mo1-N1-C1	-92.6(2)	N_{2}^{2} C_{6}^{2} C_{7}^{2} C_{8}^{2}	-35(5)
03—Mo1—N1—C5	13 1 (4)	C5-C6-C7-C8	173 5 (3)
02 - Mo1 - N1 - C5	165 3 (2)	C6-C7-C8-C9	12(5)
01 - Mo1 - N1 - C5	-93 7 (2)	C6-C7-C8-C15	-179.8 (3)
N2-M01-N1-C5	-5.0 (2)	C7—C8—C9—C10	0.8 (5)
Cl1—Mo1—N1—C5	74 9 (2)	$C_{15} - C_{8} - C_{9} - C_{10}$	-1782(3)
$M_0 = M_0 $	38(2)	C6-N2-C10-C9	-1.7(4)
	(-)		··· (·)

O2—Mo1—N2—C10	150.5 (3)	Mo1—N2—C10—C9	-179.0 (2)
O1—Mo1—N2—C10	-96.7 (2)	C8—C9—C10—N2	-0.6 (5)
N1—Mo1—N2—C10	177.5 (2)	C2—C3—C11—C14	5.6 (5)
Cl1-Mo1-N2-C10	95.7 (2)	C4—C3—C11—C14	-171.7 (3)
O3—Mo1—N2—C6	-173.5 (2)	C2—C3—C11—C13	-115.8 (4)
O2—Mo1—N2—C6	-26.7 (4)	C4—C3—C11—C13	67.0 (4)
O1—Mo1—N2—C6	86.1 (2)	C2-C3-C11-C12	125.0 (4)
N1—Mo1—N2—C6	0.3 (2)	C4—C3—C11—C12	-52.2 (4)
Cl1—Mo1—N2—C6	-81.6 (2)	C9—C8—C15—C18	-138.6 (4)
O5—Mo2—N3—C19	-1.0 (2)	C7—C8—C15—C18	42.5 (5)
O4—Mo2—N3—C19	157.1 (3)	C9—C8—C15—C16	-10.8 (5)
O1—Mo2—N3—C19	-101.5 (2)	C7—C8—C15—C16	170.3 (4)
N4—Mo2—N3—C19	176.4 (2)	C9—C8—C15—C17	106.4 (4)
Cl2—Mo2—N3—C19	93.7 (2)	C7—C8—C15—C17	-72.6 (4)
O5—Mo2—N3—C23	179.7 (2)	C23—N3—C19—C20	2.2 (4)
O4—Mo2—N3—C23	-22.2 (4)	Mo2—N3—C19—C20	-177.1 (2)
O1—Mo2—N3—C23	79.2 (2)	N3-C19-C20-C21	0.1 (5)
N4—Mo2—N3—C23	-3.0 (2)	C19—C20—C21—C22	-2.8 (4)
Cl2—Mo2—N3—C23	-85.6 (2)	C19—C20—C21—C29	177.6 (3)
O5—Mo2—N4—C28	-171.6 (3)	C20—C21—C22—C23	3.2 (4)
O4—Mo2—N4—C28	-5.4 (2)	C29—C21—C22—C23	-177.2 (3)
O1—Mo2—N4—C28	94.0 (2)	C19—N3—C23—C22	-1.8 (4)
N3—Mo2—N4—C28	-179.2 (2)	Mo2—N3—C23—C22	177.6 (2)
Cl2—Mo2—N4—C28	-96.3 (2)	C19—N3—C23—C24	-179.5 (3)
O5—Mo2—N4—C24	13.8 (4)	Mo2—N3—C23—C24	-0.1 (3)
O4—Mo2—N4—C24	179.9 (2)	C21—C22—C23—N3	-1.0 (4)
O1—Mo2—N4—C24	-80.6 (2)	C21—C22—C23—C24	176.5 (3)
N3—Mo2—N4—C24	6.2 (2)	C28—N4—C24—C25	-2.3 (4)
Cl2—Mo2—N4—C24	89.1 (2)	Mo2—N4—C24—C25	172.5 (2)
O3—Mo1—O1—Mo2	60.75 (19)	C28—N4—C24—C23	176.7 (2)
O2—Mo1—O1—Mo2	-48.57 (19)	Mo2—N4—C24—C23	-8.5 (3)
N2—Mo1—O1—Mo2	151.74 (18)	N3—C23—C24—N4	5.4 (4)
N1—Mo1—O1—Mo2	-139.15 (18)	C22-C23-C24-N4	-172.2 (3)
Cl1—Mo1—O1—Mo2	-172.16 (6)	N3—C23—C24—C25	-175.6 (3)
O5-Mo2-O1-Mo1	-40.34 (19)	C22—C23—C24—C25	6.8 (4)
O4—Mo2—O1—Mo1	-150.18 (18)	N4—C24—C25—C26	2.1 (4)
N4—Mo2—O1—Mo1	118.93 (18)	C23—C24—C25—C26	-176.8 (3)
N3—Mo2—O1—Mo1	49.02 (18)	C24—C25—C26—C27	-0.1 (4)
Cl2—Mo2—O1—Mo1	91.5 (2)	C24—C25—C26—C33	179.6 (3)
C5—N1—C1—C2	-3.3 (4)	C25—C26—C27—C28	-1.7 (4)
Mo1—N1—C1—C2	164.5 (2)	C33—C26—C27—C28	178.7 (3)
N1—C1—C2—C3	0.4 (5)	C24—N4—C28—C27	0.5 (4)
C1—C2—C3—C4	3.8 (4)	Mo2—N4—C28—C27	-174.3 (2)
C1—C2—C3—C11	-173.6 (3)	C26—C27—C28—N4	1.5 (5)
C2—C3—C4—C5	-5.2 (5)	C20—C21—C29—C31	-18.8 (4)
C11—C3—C4—C5	172.3 (3)	C22—C21—C29—C31	161.6 (3)
C1—N1—C5—C4	1.8 (4)	C20—C21—C29—C32	-139.8 (3)
Mo1—N1—C5—C4	-166.3 (2)	C22—C21—C29—C32	40.6 (4)
C1—N1—C5—C6	176.7 (2)	C20-C21-C29-C30	101.0 (4)

Mo1—N1—C5—C6	8.6 (3)		C22—0	C21—C29—C30		-78.6	(4)
C3—C4—C5—N1	2.6 (5)		C27—0	C26—C33—C34		-117.	4 (3)
C3—C4—C5—C6	-172.0 (3)		C25—0	C26—C33—C34		62.9 (3)
C10—N2—C6—C7	3.7 (4)		C27—0	C26—C33—C35		2.2 (4)
Mo1—N2—C6—C7	-178.9 (2)		C25—0	C26—C33—C35		-177.	4 (3)
C10—N2—C6—C5	-173.5 (2)		C27—0	C26—C33—C36		122.4	(3)
Mo1—N2—C6—C5	3.8 (3)		C25—(C26—C33—C36		-57.2	(4)
Hydrogen-bond geometry (Å, °)							
D—H···A		<i>D</i> —Н	1	H…A	$D \cdots A$		D—H···A
C27—H27…O1 ⁱ		0.95		2.52	3.341 (3)		145
C34—H34A···Cl1 ⁱⁱ		0.98	2	2.77	3.748 (4)		174

C35—H35A…O4 ⁱ	0.98	2.54	3.421 (4)	149
C12—H12C…O1W	0.98	2.69	3.641 (16)	163
C18—H18B…O1W	0.98	2.10	2.970 (18)	147
O1W—Cl2 ⁱ			3.573 (18)	
O1W—O5 ⁱⁱⁱ			3.236 (17)	

Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1/2, y-1/2, -z+1/2; (iii) x-1/2, -y+3/2, z+1/2.

